Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | \(g_{-3}\) | \(h_{3}\) | \(-h_{5}-2h_{4}+2h_{2}+h_{1}\) | \(g_{3}\) | \(g_{14}+g_{13}\) | \(g_{4}\) | \(g_{8}\) | \(g_{2}\) | \(g_{7}\) | \(g_{11}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(2\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi_{1}\) | \(0\) | \(0\) | \(4\psi_{1}\) | \(\omega_{1}\) | \(\omega_{2}-2\psi_{1}-6\psi_{2}\) | \(\omega_{2}+2\psi_{1}-6\psi_{2}\) | \(\omega_{2}-2\psi_{1}+6\psi_{2}\) | \(\omega_{2}+2\psi_{1}+6\psi_{2}\) | \(2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi_{1}} \) → (0, 0, -4, 0) | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{4\psi_{1}} \) → (0, 0, 4, 0) | \(\displaystyle V_{\omega_{1}} \) → (1, 0, 0, 0) | \(\displaystyle V_{\omega_{2}-2\psi_{1}-6\psi_{2}} \) → (0, 1, -2, -6) | \(\displaystyle V_{\omega_{2}+2\psi_{1}-6\psi_{2}} \) → (0, 1, 2, -6) | \(\displaystyle V_{\omega_{2}-2\psi_{1}+6\psi_{2}} \) → (0, 1, -2, 6) | \(\displaystyle V_{\omega_{2}+2\psi_{1}+6\psi_{2}} \) → (0, 1, 2, 6) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | |||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi_{1}\) | \(0\) | \(4\psi_{1}\) | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}-2\psi_{1}-6\psi_{2}\) \(\omega_{1}-\omega_{2}-2\psi_{1}-6\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{1}-6\psi_{2}\) \(-\omega_{2}-2\psi_{1}-6\psi_{2}\) | \(\omega_{2}+2\psi_{1}-6\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{1}-6\psi_{2}\) \(-\omega_{1}+\omega_{2}+2\psi_{1}-6\psi_{2}\) \(-\omega_{2}+2\psi_{1}-6\psi_{2}\) | \(\omega_{2}-2\psi_{1}+6\psi_{2}\) \(\omega_{1}-\omega_{2}-2\psi_{1}+6\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}\) \(-\omega_{2}-2\psi_{1}+6\psi_{2}\) | \(\omega_{2}+2\psi_{1}+6\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{1}+6\psi_{2}\) \(-\omega_{1}+\omega_{2}+2\psi_{1}+6\psi_{2}\) \(-\omega_{2}+2\psi_{1}+6\psi_{2}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi_{1}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi_{1}}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{0}\oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{2}-2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{2}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}+2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi_{1}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{4\psi_{1}}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{0}\oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{2}-2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{2}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}+2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) |